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ABSTRACT 
Genetic Programming uses trees to represent chromosomes.  The 
user defines the representation space by defining the set of 
functions and terminals to label the nodes in the trees. The 
sufficiency principle requires that the set be sufficient to label the 
desired solution trees, often forcing the user to enlarge the set, 
thus also enlarging the search space. Structure-preserving 
crossover, STGP, CGP, and CFG-based GP give the user the 
power to reduce the space by specifying rules for valid tree 
construction: types, syntax, and heuristics. However, in general 
the user may not be aware of the best representation space, 
including heuristics, to solve a particular problem. Recently, the 
ACGP methodology for extracting problem-specific heuristics, 
and thus for learning model of the problem domain, was 
introduced with preliminary off-line results. This paper overviews 
ACGP, pointing out its strength and limitations in the off-line 
mode. It then introduces a new on-line model, for learning while 
solving a problem, illustrated with experiments involving the 
multiplexer and the Santa Fe trail.   

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control 
Methods, and Search  

I.2.6 [Artificial Intelligence]: Learning  

General Terms 
Design, Experimentation. 

Keywords 
Genetic Programming, Machine Learning, Heuristics. 

1. INTRODUCTION 
Evolutionary computation techniques solve a problem by utilizing 
a population of solutions evolving under limited resources. The 
solutions (chromosomes) are evaluated by a problem-specific 
user-defined evaluation method. They compete for survival based 
on this fitness, and they undergo simulated evolution by means of 
crossover and mutation operators. 

Genetic Programming (GP), introduced by Koza [9] differs from 

other evolutionary methods by mainly using trees to represent 
potential solutions. Trees provide rich representation that is 
sufficient to represent computer programs, analytical functions, 
variable length structures, even computer hardware [1][9].  The 
user defines the representation space by defining the set of 
functions and terminals labeling the nodes of the trees. One of the 
foremost principles is that of sufficiency [9], which states that the 
function and terminal sets must be sufficient to express a solution 
to a problem. The reason is obvious: every solution will be in the 
form of a tree, labeled only with the user-defined elements. 
Sufficiency usually forces the user to enlarge the sets of functions 
and terminals, to ensure the inclusion of the necessary elements. 
This unfortunately dramatically increases the search space. Even 
if the user is aware of the functions and terminals needed in a 
domain, he/she may not be aware of the best subset to solve a 
particular problem. Moreover, even if such a subset is known, 
another important question arises: whether all functions and 
terminals should be equally available in every context, or whether 
there should be some heuristic distribution. For example, a 
terminal t may be required but never as an argument to function 
f1() and maybe just rarely as an argument to f2().   

Such questions are more general versions of those referred to  as 
design issues. For example, McPhee with Hopper [11], and Burke 
[2] analyzed the effect of the root node selection on GP. Hall and 
Soule [4] have studied the phenomenon more extensively and 
have concluded that the choice of the root node has a very 
significant impact on the solutions generated, and that fixing the 
root node properly amounts to limiting the search space needed to 
be searched. Daida has shown that later GP generations introduce 
little variation into the structure of the generated trees [3], 
indicating that these later generations search a smaller subspace of 
the search space. Langdon has shown that GP typically searches 
only a well defined region of the potential search space [10]. Hall 
and Soule call these phenomena the design evolved by GP, 
arguing that this process in fact resembles top-down design 
strategy [4] – first set your choice on the most general design 
issues, then continue with the more specific ones. However, very 
little research has been devoted to such design issues beyond the 
root node. The reason is quite obvious – the lack of tools and 
methodologies to impose, observe, and analyze various designs 
across different tree levels. 
There are two kinds of heuristics that can be available in a 
problem domain: weak and strong. Strong heuristics are in fact 
constraints, that is they impose specific rules. Weak constraints 
are, on the other hand, preferences. For example, a rule that 
prohibits f1() from using terminal t is a strong heuristic, while the 
rule which states that this terminal should be used half as often as 
other terminals is a weak heuristic. 
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Heuristics can also be expressed at different levels, depending on 
the expression language. For example, one may speak of allowed 
labels for an argument of a function, or about two-level deep 
subtree structures. Of course, the more complex the language, the 
more detailed heuristics can be expressed. 
To help process limited heuristics, some methods have been 
developed over the years. Structure-preserving crossover was 
introduced as the first attempt [9], with the primary initial 
intention to preserve structural constraints imposed by automatic 
modules ADFs. It is capable of processing very limited forms of 
strong constraints. In the nineties, three independent more generic 
methodologies have been developed to allow problem-
independent heuristics on the tree construction. Montana proposed 
Strongly Typed GP (STGP) [12], which processes strong 
constraints based on data types. For example, if the function f1() 
requires Boolean as its first argument, only Boolean—producing 
functions and terminals would be allowed to label argument 
subtree of f1(). Researchers interested more directly in program 
induction proposed Context-free based GP (CFG-GP) [14], which 
allows processing strong context-free constraints, that is syntax 
rules. Janikow proposed Constrained GP (CGP), which allows 
both strong and weak heuristics [5][8].  
The above technologies allow automatic processing of limited 
strong (plus weak in CGP) heuristics, resulting in great 
improvements on GP performance in domains and cases where 
such heuristics are necessary or known. However, what about the 
vast number of problems where no such heuristics are available or 
are unknown? This question brings two issues:  

1. Evolving problem-specific heuristics as a means of 
improving a single GP run (on-line). 

2. Evolving problem and domain-specific heuristics as a 
means of increasing GP’s problem-solving capabilities 
(off-line). 

Recently, a new methodology, Adaptable CGP (ACGP) was 
introduced, which allows automatic extraction of problem-
specific heuristics. Such heuristics in fact represent a model of the 
problem, or the domain. This idea of building a model of the 
domain while solving the problem has been exploited in genetic 
algorithms with the hBOA methodology [13] or the more general 
Estimation Distribution Algorithms EDAs. However, the model 
built here is still more primitive due to the limitations of the 
heuristics used, as explained in section 3. 

The ACGP methodology was previously demonstrated using off-
line learning, that is learning by analyzing the trace of a particular 
application, and thus not immediately helping with the problem 
being solved [6][7]. However, when the same design was applied 
to on-line learning, that is learning to be immediately used to help 
with the problem being solved, the results were much worse. This 
paper presents a modified version of ACGP designed for on-line 
learning, which performs much better.  

In section 2, we point out limitations of both GP and CGP. In 
section 3, we review the ACGP methodology and the heuristics it 
is capable of processing. We demonstrate ACGP’s capabilities 
with off-line learning, and then we show its own limitations for 
on-line learning - using the multiplexer and the Santa Fe trail 
problems. We then present the updated ACGP methodology 

designed for on-line learning, and we illustrate with some results. 
We close by discussing the remaining weaknesses of ACGP. 

All illustrative experiments are averages of 10 independent runs, 
using the standard settings for these problems, population 500, 
crossover 0.85, reproduction 0.05, mutation 0.05 and uniform 
mutation 0.05, and tournament selection size 7. 

2. GP AND CGP LIMITATIONS 
2.1 GP and its limitations 
 

 
Figure 1. GP in action. 

The GP’s generation loop is illustrated in figure 1. The population 
is initialized using the available functions and terminals, mutation 
and crossover produce new chromosomes, while reproduction 
copies chromosomes into the new population. The initialization is 
completely random, and thus the initial trees are randomly 
distributed in the search space (even though not all regions of the 
search space are sampled the same, as according to [10]). 
Selective pressure, used in mutation, crossover, and reproduction, 
cause convergence toward higher-fitness regions. This 
convergence becomes the driving force behind GP – it is the 
primary information extracted and processed by the algorithm. 
However, this information is completely disregarded by mutation, 
which generates subtrees from the random distribution. Moreover, 
crossover, the primary GP operator, also uses this information to a 
limited extent only. While crossover’s subtrees are taken from the 
converging population, and thus use the information expressed in 
the converging population, the actual method of producing 
offspring places these subtrees in random context, and thus again 
disregards the collected information again. This results in the 
mostly destructive nature of crossover and results in bloat. 

2.2 CGP, its Capabilities and Limitations 
 

 
Figure 2. CGP in action. 

CGP, as the other techniques for processing heuristics mentioned 
in section 1, is a methodology allowing the user to specify 
heuristics for initialization, mutation, and crossover, as illustrated 
in figure 2. The heuristics can be both weak and strong. The user 



enters the heuristics using a specialized language [5][8]. The 
heuristics drive the initialization, mutation, and crossover.  

CGP relies on closing the search space to the subspace satisfying 
the desired strong heuristics. For example, a strong heuristic 
prohibiting f1() from using t as its argument would never generate 
any tree with such labeling, neither through initialization nor 
mutation/crossover. Moreover, the overhead is minimal [5]. Weak 
constraints are processed as preferences. For example, if there is a 
weak heuristic saying that f1() is to use t twice as often as s, then t 
would show up twice as often as s as the argument of f1() in the 
initial population, would be twice as likely in mutation, and a 
subtree labeled with t would be twice as likely to be moved as a 
new subtree for f1() in crossover. The heuristics are all expressed 
as parent-child relations (and separately for the root). These 
relations are called first-order heuristics [6][7]. For example, CGP 
can process constraints on f1() and each of its arguments 
separately, but not as a group nor in relation to other nodes.  

CGP can also use data types as the basis for its heuristics, and it 
supports type-overloaded functions [8]. Its processing power is 
illustrated in figure 3, which compares its solving capabilities 
against those of GP, using the multiplexer [9]. The figure shows 
the learning curve for GP, and for two cases of CGP when fed 
with two kinds of heuristics. CGP1 uses the simple heuristic that 
the if() function should only test addresses, straight or negated. 
CGP2 extends this heuristic by dropping all functions except 
not()  and if(), and by allowing only data or recursive if() in the 
action parts of if(). For more examples of useful heuristics for the 
multiplexer, see [5][6][7]. 
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Figure 3. GP and CGP on the multiplexer: quality. 

Figure 3 illustrates the usefulness of the heuristics. However, one 
may ask about the complexity of processing the heuristics. It turns 
out that due to minimal overhead [5], much smaller trees 
processed, and in fact savings due to reduced choices for 
mutation/crossover, CGP1 and CGP2 actually complete the 50 
generations (no stopping on termination) much faster, as 
illustrated in figure 4 (Total time for the 10 runs). When we 
measure only the time needed for the best of 10 to find the 
solution, when executed concurrently (Until solved), the 
difference is much more pronounced (none of the 10 GP runs 
solved the problem). 

However, CGP is still limited in two respects: 
1. First-order heuristics are quite weak in their 

expressiveness.  
2. The heuristics are not adjusted as GP learns more 

information about the search space. 
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Figure 4. GP and CGP on the multiplexer: timing. 

To alleviate the first problem, one must design methodologies to 
express and then enforce more powerful heuristics. This is quite 
challenging. The next version of ACGP is processing eight 
different kinds of heuristics, but at present it still lacks all the 
mechanisms needed for their enforcement. 

The second problem can be explained as follow. When CGP 
performs mutation, it generates the new subtrees from the 
distribution space as defined by the first-order heuristics, but it 
does not adjust those heuristics as GP learns, through selection, 
about the relative payoff in different regions of the search space. 
The same happens in crossover. Thus, they both still disregard 
what GP learns about the search space. 

3. ACGP 
3.1 Off-line ACGP Capabilities and 
Limitations 
 

 
Figure 5. Off-line ACGP in action. 

 
ACGP is a methodology to automatically update the heuristics, as 
illustrated in figure 5. ACGP works as CGP for a number of 
generations, after which it analyzes the distribution of the first-
order heuristics in the population, uses this information to update 



the heuristics, reinitializes the population, and starts all over. As 
such, it is an off-line method aiming at extracting useful heuristics 
about the problem. Janikow has demonstrated the capacity of the 
system using the multiplexer problem in [6][7]. The same 
capacity is again demonstrated in figures 6, 7, and 8.  
Figures 6 and 7 show the quality of the best solution for the 
multiplexer and Santa Fe trail over 200 generations. ACGP20 is 
the ACGP system in the off-line mode, while learning the 
heuristics every 20 generations. ACGP20R is the same except the 
population is reinitialized after the heuristics are updated. ACGP1 
is the same basic system except that the heuristics are updated at 
every generation. ACGP1R again does the same except for 
reinitializing the population at every generation.  

ACGP20R extracts the heuristics at the end of every 20 
generations, and then restarts with new population grown using 
the new heuristics. It clearly does best, in the long run, 
outperforming ACGP20, which after adjusting the heuristics 
continues from the same population. ACGP1R does most poorly 
because it does not allow selection to converge to any meaningful 
regions before extracting the heuristics and reinitializing the 
population. Thus, the heuristics tend to be random, possibly 
reflecting local minimum - and causing the reinitializations to be 
faulty. ACGP1 does not differentiate substantially from GP itself. 
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Figure 6. GP and ACGP on the multiplexer problem. 

 
We observe similar behavior on the Santa Fe trail, as illustrated in 
figure 7. Here, ACGP1R again clearly detriments evolution, 
while all other systems substantially improve over GP – with 
ACGP20R coming clearly ahead.  
Between figure 6 and figure 7, one may notice that the Santa Fe 
problem is much more difficult for the standard GP and thus we 
gain more from improvements from the other systems.  
The results of figure 7 on the Santa Fe trail are visualized 
differently in figure 8. Here, we take the final heuristics, after the 
200 generations, from all 5 systems and we repeat the runs for 
another 20 generations. As seen, the heuristics discovered by 
ACGP20R offers the most significant improvement. In fact, it 
starts with an almost perfect solution in just the initial population 

of 500, and consistently solves the problem in the next generation 
(averages of 10 runs saturate at the maximal value of 89).  
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Figure 7. GP and ACGP on the Santa Fe trail. 
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3.2 On-line ACGP Capabilities and 
Limitations 
 
When building the on-line version, the primary challenge was to 
allow ACGP both the exploitation accomplished through mutation 
and crossover, while also allowing it to construct the first-order 
model. As illustrated in figures 6, 7, and 8, regrowing the 
population at short generation intervals has a detrimental effect, 
as it does not allow GP to converge, and thus the extracted 
heuristics are not correct. However, the same figures also 
demonstrate that regrowing the population provides far superior 
results in off-line learning. This is easy to understand – the 



population converges, the heuristics reflect this convergence, so 
applying these heuristics to the same population has the effect of 
increasing the speed of convergence. However, this can lead to 
premature convergence. This feedback effect is avoided when, 
after the heuristics reflect the findings of the converged 
population, a new population is regrown, allowing deeper 
exploration of the space – not random but guided by the 
heuristics. Thus, our primary objective was to allow some form of 
regrowing, yet prevent this from randomizing the search.  
 

 
Figure 9. On-line ACGP in action. 

 
Our first attempt was to mix mutation, crossover, with this 
reinitialization, allowing each to apply to a portion of the 
population. This produced some improvements. Our final design, 
illustrated in figure 9, is to use mutation, crossover, and 
reproduction as in CGP, then apply selection to generate samples 
from the higher-fitness regions, analyze these samples and 
correspondingly update the heuristics, use the new heuristics to 
generate a new population, and then merge this population with 
the one created by standard CGP, via tournament selection. We 
are still investigating the proper way to merge these two 
populations – tournament selections allow a controllable way of 
ensuring that members of both populations will be present in the 
new population, while at the same time using more fitted 
individuals to move on. Preliminary results using this on-line 
ACGP are presented in figures 10 and 11.  
Figure 10 traces the first 20 iterations of the runs of  figure 6: the 
multiplexer problem using GP, ACGP1, ACGP1R, ACGP20, 
and ACGP20R. GP and ACGP20/20R are identical since both of 
these ACGP runs do not extract the heuristics until the 20th 
generation. ACGP1 is seen indifferent from GP, while ACGP1R 
is seen worse, due to its detrimental reinitializations  as explained 
before. The figure also presents the results from the on-line 
version of ACGP. As seen, slowly, but surely the on-line version 
is capable of improving the model, and thus the run, from the very 
beginning. The same is seen for the Santa Fe problem in figure 
11, with the same results. 
The on-line model for ACGP still suffers from two problems: 

1. It still relies on the relatively weak first-order heuristics.  

2. The system is quite unstable with respect to many 
parameters.  
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Figure 10. On-line ACGP on the multiplexer problem. 
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Figure 11. On-line ACGP on the Santa Fe trail. 
 
As mentioned before, we are developing a new version of ACGP, 
which includes heuristics on types and overloaded functions with 
eight different heuristics, some of them more powerful than the 
simple first-order heuristics used here. As to the stability of the 
system, more research needs to be done. 

4. CONCLUSIONS 
This paper overviews the limitations of standard GP when it 
comes to utilizing the information collected during evolution. It 
then discusses how CGP alleviates some of the problems, yet 
faces others. Then, it presents ACGP, which in both off-line and 
on-line modes collects information evailable during GP’s search 
into a problem model – a set of first-order heuristics. The paper 



illustrates the capabilities of the off-line model, and then points 
out its own limitations when applied to on-line learning. Finally, 
it introduces the on-line ACGP model, and shows how this model 
improves the on-line performance.  
The problems still faced by both ACGP models are: limitations of 
the first-order heuristics, and system instability under its 
parameters. We are currently working on a more powerful set of 
heuristics, and will continue working on the stability problem in 
the future.  
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