
Evolving Problem Heuristics with On-line ACGP
 Cezary Z Janikow

UMSL
St Louis, MO 63367

1-314-516-6352

janikow@umsl.edu

ABSTRACT
Genetic Programming uses trees to represent chromosomes. The
user defines the representation space by defining the set of
functions and terminals to label the nodes in the trees. The
sufficiency principle requires that the set be sufficient to label the
desired solution trees, often forcing the user to enlarge the set,
thus also enlarging the search space. Structure-preserving
crossover, STGP, CGP, and CFG-based GP give the user the
power to reduce the space by specifying rules for valid tree
construction: types, syntax, and heuristics. However, in general
the user may not be aware of the best representation space,
including heuristics, to solve a particular problem. Recently, the
ACGP methodology for extracting problem-specific heuristics,
and thus for learning model of the problem domain, was
introduced with preliminary off-line results. This paper overviews
ACGP, pointing out its strength and limitations in the off-line
mode. It then introduces a new on-line model, for learning while
solving a problem, illustrated with experiments involving the
multiplexer and the Santa Fe trail.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search

I.2.6 [Artificial Intelligence]: Learning

General Terms
Design, Experimentation.

Keywords
Genetic Programming, Machine Learning, Heuristics.

1. INTRODUCTION
Evolutionary computation techniques solve a problem by utilizing
a population of solutions evolving under limited resources. The
solutions (chromosomes) are evaluated by a problem-specific
user-defined evaluation method. They compete for survival based
on this fitness, and they undergo simulated evolution by means of
crossover and mutation operators.

Genetic Programming (GP), introduced by Koza [9] differs from

other evolutionary methods by mainly using trees to represent
potential solutions. Trees provide rich representation that is
sufficient to represent computer programs, analytical functions,
variable length structures, even computer hardware [1][9]. The
user defines the representation space by defining the set of
functions and terminals labeling the nodes of the trees. One of the
foremost principles is that of sufficiency [9], which states that the
function and terminal sets must be sufficient to express a solution
to a problem. The reason is obvious: every solution will be in the
form of a tree, labeled only with the user-defined elements.
Sufficiency usually forces the user to enlarge the sets of functions
and terminals, to ensure the inclusion of the necessary elements.
This unfortunately dramatically increases the search space. Even
if the user is aware of the functions and terminals needed in a
domain, he/she may not be aware of the best subset to solve a
particular problem. Moreover, even if such a subset is known,
another important question arises: whether all functions and
terminals should be equally available in every context, or whether
there should be some heuristic distribution. For example, a
terminal t may be required but never as an argument to function
f1() and maybe just rarely as an argument to f2().

Such questions are more general versions of those referred to as
design issues. For example, McPhee with Hopper [11], and Burke
[2] analyzed the effect of the root node selection on GP. Hall and
Soule [4] have studied the phenomenon more extensively and
have concluded that the choice of the root node has a very
significant impact on the solutions generated, and that fixing the
root node properly amounts to limiting the search space needed to
be searched. Daida has shown that later GP generations introduce
little variation into the structure of the generated trees [3],
indicating that these later generations search a smaller subspace of
the search space. Langdon has shown that GP typically searches
only a well defined region of the potential search space [10]. Hall
and Soule call these phenomena the design evolved by GP,
arguing that this process in fact resembles top-down design
strategy [4] – first set your choice on the most general design
issues, then continue with the more specific ones. However, very
little research has been devoted to such design issues beyond the
root node. The reason is quite obvious – the lack of tools and
methodologies to impose, observe, and analyze various designs
across different tree levels.
There are two kinds of heuristics that can be available in a
problem domain: weak and strong. Strong heuristics are in fact
constraints, that is they impose specific rules. Weak constraints
are, on the other hand, preferences. For example, a rule that
prohibits f1() from using terminal t is a strong heuristic, while the
rule which states that this terminal should be used half as often as
other terminals is a weak heuristic.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-698-1/07/0007...$5.00.

Heuristics can also be expressed at different levels, depending on
the expression language. For example, one may speak of allowed
labels for an argument of a function, or about two-level deep
subtree structures. Of course, the more complex the language, the
more detailed heuristics can be expressed.
To help process limited heuristics, some methods have been
developed over the years. Structure-preserving crossover was
introduced as the first attempt [9], with the primary initial
intention to preserve structural constraints imposed by automatic
modules ADFs. It is capable of processing very limited forms of
strong constraints. In the nineties, three independent more generic
methodologies have been developed to allow problem-
independent heuristics on the tree construction. Montana proposed
Strongly Typed GP (STGP) [12], which processes strong
constraints based on data types. For example, if the function f1()
requires Boolean as its first argument, only Boolean—producing
functions and terminals would be allowed to label argument
subtree of f1(). Researchers interested more directly in program
induction proposed Context-free based GP (CFG-GP) [14], which
allows processing strong context-free constraints, that is syntax
rules. Janikow proposed Constrained GP (CGP), which allows
both strong and weak heuristics [5][8].
The above technologies allow automatic processing of limited
strong (plus weak in CGP) heuristics, resulting in great
improvements on GP performance in domains and cases where
such heuristics are necessary or known. However, what about the
vast number of problems where no such heuristics are available or
are unknown? This question brings two issues:

1. Evolving problem-specific heuristics as a means of
improving a single GP run (on-line).

2. Evolving problem and domain-specific heuristics as a
means of increasing GP’s problem-solving capabilities
(off-line).

Recently, a new methodology, Adaptable CGP (ACGP) was
introduced, which allows automatic extraction of problem-
specific heuristics. Such heuristics in fact represent a model of the
problem, or the domain. This idea of building a model of the
domain while solving the problem has been exploited in genetic
algorithms with the hBOA methodology [13] or the more general
Estimation Distribution Algorithms EDAs. However, the model
built here is still more primitive due to the limitations of the
heuristics used, as explained in section 3.

The ACGP methodology was previously demonstrated using off-
line learning, that is learning by analyzing the trace of a particular
application, and thus not immediately helping with the problem
being solved [6][7]. However, when the same design was applied
to on-line learning, that is learning to be immediately used to help
with the problem being solved, the results were much worse. This
paper presents a modified version of ACGP designed for on-line
learning, which performs much better.

In section 2, we point out limitations of both GP and CGP. In
section 3, we review the ACGP methodology and the heuristics it
is capable of processing. We demonstrate ACGP’s capabilities
with off-line learning, and then we show its own limitations for
on-line learning - using the multiplexer and the Santa Fe trail
problems. We then present the updated ACGP methodology

designed for on-line learning, and we illustrate with some results.
We close by discussing the remaining weaknesses of ACGP.

All illustrative experiments are averages of 10 independent runs,
using the standard settings for these problems, population 500,
crossover 0.85, reproduction 0.05, mutation 0.05 and uniform
mutation 0.05, and tournament selection size 7.

2. GP AND CGP LIMITATIONS
2.1 GP and its limitations

Figure 1. GP in action.

The GP’s generation loop is illustrated in figure 1. The population
is initialized using the available functions and terminals, mutation
and crossover produce new chromosomes, while reproduction
copies chromosomes into the new population. The initialization is
completely random, and thus the initial trees are randomly
distributed in the search space (even though not all regions of the
search space are sampled the same, as according to [10]).
Selective pressure, used in mutation, crossover, and reproduction,
cause convergence toward higher-fitness regions. This
convergence becomes the driving force behind GP – it is the
primary information extracted and processed by the algorithm.
However, this information is completely disregarded by mutation,
which generates subtrees from the random distribution. Moreover,
crossover, the primary GP operator, also uses this information to a
limited extent only. While crossover’s subtrees are taken from the
converging population, and thus use the information expressed in
the converging population, the actual method of producing
offspring places these subtrees in random context, and thus again
disregards the collected information again. This results in the
mostly destructive nature of crossover and results in bloat.

2.2 CGP, its Capabilities and Limitations

Figure 2. CGP in action.

CGP, as the other techniques for processing heuristics mentioned
in section 1, is a methodology allowing the user to specify
heuristics for initialization, mutation, and crossover, as illustrated
in figure 2. The heuristics can be both weak and strong. The user

enters the heuristics using a specialized language [5][8]. The
heuristics drive the initialization, mutation, and crossover.

CGP relies on closing the search space to the subspace satisfying
the desired strong heuristics. For example, a strong heuristic
prohibiting f1() from using t as its argument would never generate
any tree with such labeling, neither through initialization nor
mutation/crossover. Moreover, the overhead is minimal [5]. Weak
constraints are processed as preferences. For example, if there is a
weak heuristic saying that f1() is to use t twice as often as s, then t
would show up twice as often as s as the argument of f1() in the
initial population, would be twice as likely in mutation, and a
subtree labeled with t would be twice as likely to be moved as a
new subtree for f1() in crossover. The heuristics are all expressed
as parent-child relations (and separately for the root). These
relations are called first-order heuristics [6][7]. For example, CGP
can process constraints on f1() and each of its arguments
separately, but not as a group nor in relation to other nodes.

CGP can also use data types as the basis for its heuristics, and it
supports type-overloaded functions [8]. Its processing power is
illustrated in figure 3, which compares its solving capabilities
against those of GP, using the multiplexer [9]. The figure shows
the learning curve for GP, and for two cases of CGP when fed
with two kinds of heuristics. CGP1 uses the simple heuristic that
the if() function should only test addresses, straight or negated.
CGP2 extends this heuristic by dropping all functions except
not() and if(), and by allowing only data or recursive if() in the
action parts of if(). For more examples of useful heuristics for the
multiplexer, see [5][6][7].

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50

Generations

Q
ua

lit
y

GP
CGP1
CGP2

Figure 3. GP and CGP on the multiplexer: quality.

Figure 3 illustrates the usefulness of the heuristics. However, one
may ask about the complexity of processing the heuristics. It turns
out that due to minimal overhead [5], much smaller trees
processed, and in fact savings due to reduced choices for
mutation/crossover, CGP1 and CGP2 actually complete the 50
generations (no stopping on termination) much faster, as
illustrated in figure 4 (Total time for the 10 runs). When we
measure only the time needed for the best of 10 to find the
solution, when executed concurrently (Until solved), the
difference is much more pronounced (none of the 10 GP runs
solved the problem).

However, CGP is still limited in two respects:
1. First-order heuristics are quite weak in their

expressiveness.
2. The heuristics are not adjusted as GP learns more

information about the search space.

0

200

400

600

800

1000

1200

1400

1600

GP CGP1 CGP2

Ti
m

e[
s]

Total
Until solved

Figure 4. GP and CGP on the multiplexer: timing.

To alleviate the first problem, one must design methodologies to
express and then enforce more powerful heuristics. This is quite
challenging. The next version of ACGP is processing eight
different kinds of heuristics, but at present it still lacks all the
mechanisms needed for their enforcement.

The second problem can be explained as follow. When CGP
performs mutation, it generates the new subtrees from the
distribution space as defined by the first-order heuristics, but it
does not adjust those heuristics as GP learns, through selection,
about the relative payoff in different regions of the search space.
The same happens in crossover. Thus, they both still disregard
what GP learns about the search space.

3. ACGP
3.1 Off-line ACGP Capabilities and
Limitations

Figure 5. Off-line ACGP in action.

ACGP is a methodology to automatically update the heuristics, as
illustrated in figure 5. ACGP works as CGP for a number of
generations, after which it analyzes the distribution of the first-
order heuristics in the population, uses this information to update

the heuristics, reinitializes the population, and starts all over. As
such, it is an off-line method aiming at extracting useful heuristics
about the problem. Janikow has demonstrated the capacity of the
system using the multiplexer problem in [6][7]. The same
capacity is again demonstrated in figures 6, 7, and 8.
Figures 6 and 7 show the quality of the best solution for the
multiplexer and Santa Fe trail over 200 generations. ACGP20 is
the ACGP system in the off-line mode, while learning the
heuristics every 20 generations. ACGP20R is the same except the
population is reinitialized after the heuristics are updated. ACGP1
is the same basic system except that the heuristics are updated at
every generation. ACGP1R again does the same except for
reinitializing the population at every generation.

ACGP20R extracts the heuristics at the end of every 20
generations, and then restarts with new population grown using
the new heuristics. It clearly does best, in the long run,
outperforming ACGP20, which after adjusting the heuristics
continues from the same population. ACGP1R does most poorly
because it does not allow selection to converge to any meaningful
regions before extracting the heuristics and reinitializing the
population. Thus, the heuristics tend to be random, possibly
reflecting local minimum - and causing the reinitializations to be
faulty. ACGP1 does not differentiate substantially from GP itself.

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140 160 180 200

Generations

Q
ua

lit
y

GP ACGP20

ACGP20R ACGP1
ACGP1R

Figure 6. GP and ACGP on the multiplexer problem.

We observe similar behavior on the Santa Fe trail, as illustrated in
figure 7. Here, ACGP1R again clearly detriments evolution,
while all other systems substantially improve over GP – with
ACGP20R coming clearly ahead.
Between figure 6 and figure 7, one may notice that the Santa Fe
problem is much more difficult for the standard GP and thus we
gain more from improvements from the other systems.
The results of figure 7 on the Santa Fe trail are visualized
differently in figure 8. Here, we take the final heuristics, after the
200 generations, from all 5 systems and we repeat the runs for
another 20 generations. As seen, the heuristics discovered by
ACGP20R offers the most significant improvement. In fact, it
starts with an almost perfect solution in just the initial population

of 500, and consistently solves the problem in the next generation
(averages of 10 runs saturate at the maximal value of 89).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140 160 180 200

Generations

Q
ua

lit
y

GP
ACGP20
ACGP20R
ACGP1
ACGP1R

Figure 7. GP and ACGP on the Santa Fe trail.

20

30

40

50

60

70

80

90

0 5 10 15 20

Generations

H
its

 (f
oo

d
pi

ec
es

)

GP
ACGP20
ACGP20R
ACGP1
ACGP1R

Figure 8. GP and ACGP on the Santa Fe trail: using learnt
models (in terms of hits).

3.2 On-line ACGP Capabilities and
Limitations

When building the on-line version, the primary challenge was to
allow ACGP both the exploitation accomplished through mutation
and crossover, while also allowing it to construct the first-order
model. As illustrated in figures 6, 7, and 8, regrowing the
population at short generation intervals has a detrimental effect,
as it does not allow GP to converge, and thus the extracted
heuristics are not correct. However, the same figures also
demonstrate that regrowing the population provides far superior
results in off-line learning. This is easy to understand – the

population converges, the heuristics reflect this convergence, so
applying these heuristics to the same population has the effect of
increasing the speed of convergence. However, this can lead to
premature convergence. This feedback effect is avoided when,
after the heuristics reflect the findings of the converged
population, a new population is regrown, allowing deeper
exploration of the space – not random but guided by the
heuristics. Thus, our primary objective was to allow some form of
regrowing, yet prevent this from randomizing the search.

Figure 9. On-line ACGP in action.

Our first attempt was to mix mutation, crossover, with this
reinitialization, allowing each to apply to a portion of the
population. This produced some improvements. Our final design,
illustrated in figure 9, is to use mutation, crossover, and
reproduction as in CGP, then apply selection to generate samples
from the higher-fitness regions, analyze these samples and
correspondingly update the heuristics, use the new heuristics to
generate a new population, and then merge this population with
the one created by standard CGP, via tournament selection. We
are still investigating the proper way to merge these two
populations – tournament selections allow a controllable way of
ensuring that members of both populations will be present in the
new population, while at the same time using more fitted
individuals to move on. Preliminary results using this on-line
ACGP are presented in figures 10 and 11.
Figure 10 traces the first 20 iterations of the runs of figure 6: the
multiplexer problem using GP, ACGP1, ACGP1R, ACGP20,
and ACGP20R. GP and ACGP20/20R are identical since both of
these ACGP runs do not extract the heuristics until the 20th
generation. ACGP1 is seen indifferent from GP, while ACGP1R
is seen worse, due to its detrimental reinitializations as explained
before. The figure also presents the results from the on-line
version of ACGP. As seen, slowly, but surely the on-line version
is capable of improving the model, and thus the run, from the very
beginning. The same is seen for the Santa Fe problem in figure
11, with the same results.
The on-line model for ACGP still suffers from two problems:

1. It still relies on the relatively weak first-order heuristics.

2. The system is quite unstable with respect to many
parameters.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 5 10 15 20

Generations

Q
ua

lit
y

GP+ACGP20/20R
ACGP1
ACGP1R
on-line ACGP

Figure 10. On-line ACGP on the multiplexer problem.

0

0.02

0.04

0.06

0.08

0.1

0.12

0 5 10 15 20

Generations

Q
ua

lit
y

GP+ACGP20/20R
ACGP1
ACGP1R
On-line ACGP

Figure 11. On-line ACGP on the Santa Fe trail.

As mentioned before, we are developing a new version of ACGP,
which includes heuristics on types and overloaded functions with
eight different heuristics, some of them more powerful than the
simple first-order heuristics used here. As to the stability of the
system, more research needs to be done.

4. CONCLUSIONS
This paper overviews the limitations of standard GP when it
comes to utilizing the information collected during evolution. It
then discusses how CGP alleviates some of the problems, yet
faces others. Then, it presents ACGP, which in both off-line and
on-line modes collects information evailable during GP’s search
into a problem model – a set of first-order heuristics. The paper

illustrates the capabilities of the off-line model, and then points
out its own limitations when applied to on-line learning. Finally,
it introduces the on-line ACGP model, and shows how this model
improves the on-line performance.
The problems still faced by both ACGP models are: limitations of
the first-order heuristics, and system instability under its
parameters. We are currently working on a more powerful set of
heuristics, and will continue working on the stability problem in
the future.

REFERENCES
[1] Banzhaf, Wolfgang, Nordin, Peter, Keller, Robert E., and

Francone, Frank D. Genetic Programming. Morgan
Kaufmann 1998.

[2] Burke, Edmund, Gustafson, Steven, and Kendall, Graham. A
survey and analysis of diversity measures in genetic
programming. In Langdon, W., Cantu-Paz, E. Mathias, K.,
Roy, R., Davis, D., Poli, R., Balakrishnan, K., Honavar, V.,
Rudolph, G., Wegener, J., Bull, L., Potter, M., Schultz, A.,
Miller, J., Burke, E. and Jonoska, N., editors. GECCO2002:
Proceedings of the Genetic and Evolutionary Computation
Conference, 716-723, New York. Morgan Kaufmann.

[3] Daida, Jason, Hills, Adam, Ward, David, and Long, Stephen.
Visualizing tree structures in genetic programming. In
Cantu-Paz, E., Foster, J., Deb, K., Davis, D., Roy, R.,
O’Reilly, U., Beyer, H., Standish, R., Kendall, G., Wilson,
S., Harman, M., Wegener, J., Dasgupta, D., Potter, M.,
Schultz, A., Dowsland, K., Jonoska, N., and Miller, J.,
editors, Genetic and Evolutionary Computation – GECCO-
2003, volume 2724 of LNCS, 1652-1664, Chicago. Springer
Verlag.

[4] Hall, John M. and Soule, Terence. Does Genetic
Programming Inherently Adopt Structured Design
Techniques? In O’Reilly, Una-May, Yu, Tina, and Riolo,
Rick L., editors. Genetic Programming Theory and Practice
(II). Springer, New York, NY, 2005, 159-174.

[5] Janikow, Cezary Z. A Methodology for Processing Problem
Constraints in Genetic Programming. Computers and
Mathematics with Applications, 32(8):97-113, 1996.

[6] Janikow, Cezary Z. ACGP: Adaptable Constrained Genetic
Programming. In O’Reilly, Una-May, Yu, Tina, and Riolo,
Rick L., editors. Genetic Programming Theory and Practice
(II). Springer, New York, NY, 2005, 191-206.

[7] Janikow, Cezary Z. Adapting Representation in Genetic
Programming. In K. Deb et al. editors. Proceedings of
Genetic and Evolutionary Computation Conference:
GECCO 2004, 507-518.

[8] Janikow, Cezary Z. CGP.
http://www.cs.umsl.edu/~janikow/CGP.

[9] Koza, John R. Genetic Programming II: Automatic
Discovery of Reusable Programs. MIT Press, Cambridge
Massachusetts, May 1994.

[10] Langon, William. Quadratic bloat in genetic programming.
In Whitley, D., Goldberg, D., Cantu-Paz, E., Spector, L.,
Parmee, I., and Beyer, H-G., editors, Proceedings of the
Genetic and Evolutionary Conference GECCO 2000, 451-
458, Las Vegas. Morgan Kaufmann.

[11] McPhee, Nicholas F. and Hopper, Nicholas J. Analysis of
genetic diversity through population history. In Banzhaf, W.,
Daida, J., Eiben, A. Garzon, M. Honavar, V., Jakiela, M. and
Smith, R., editors Proceedings of the Genetic and
Evolutionary Computation Conference, volume 2, pages
1112-1120, Orlando, Florida, USA. Morgan Kaufmann.

[12] Montana, David J. Strongly Typed Genetic Programming.
Evolutionary Computation, 3(2):199-230, 1995.

[13] Pelikan, Martin and Goldberg, David. Boa: The Bayesian
Optimization Algorithm. In Banzhaf, Wolfgang, Daida,
Jason, Eiben, Agoston E., Garzon, Max H., Honavar, Vasant,
Jakiela, Mark, and Smith, Robert E., editors, Proceedings of
the Genetic and Evolutionary Computation Conference,
volume 1, pages 525-532, Orlando, Florida, USA, 13-17 July
1999. Morgan Kaufmann.

[14] Whigham, P. A. Grammatically-based Genetic
Programming. In Rosca, Justinian P., editor, Proceedings of
the Workshop on Genetic Programming: From Theory to
Real-World Applications, pages 33-41, Tahoe City,
California, 9 July 1995.

